Rapamycin-induced G1 cell cycle arrest employs both TGF-β and Rb pathways.
نویسندگان
چکیده
The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of G1 cell cycle progression. Two key substrates of mTORC1 are ribosomal subunit S6 kinase (S6K) and eukaryotic initiation factor 4E (eIF4E) binding protein-1 (4E-BP1). We reported previously that simultaneous knockdown of S6K and eIF4E causes a transforming growth factor-β (TGF-β)-dependent G1 cell cycle arrest in MDA-MB-231 human breast cancer cells. Rapamycin inhibits the phosphorylation of S6K at nano-molar concentrations in MDA-MB-231 cells; however, micro-molar concentrations of rapamycin are required to inhibit phosphorylation of 4E-BP1 - the phosphorylation of which liberates eIF4E to initiate translation. Micro-molar doses of rapamycin are required for complete G1 cell cycle arrest - indicating that 4E-BP1 is a critical target of mTOR for promoting cell cycle progression. Data are provided demonstrating that G1 cell cycle arrest induced by rapamycin is due to up-regulation of TGF-β signaling and down-regulation of Rb phosphorylation via phosphorylation of the mTORC1 substrates S6K and 4E-BP1 respectively. These findings enhance the current understanding of the cytostatic effects of mTORC1 suppression with therapeutic implications.
منابع مشابه
Suppression of AKT phosphorylation restores rapamycin-based synthetic lethality in SMAD4-defective pancreatic cancer cells.
mTOR has been implicated in survival signals for many human cancers. Rapamycin and TGF-β synergistically induce G1 cell-cycle arrest in several cell lines with intact TGF-β signaling pathway, which protects cells from the apoptotic effects of rapamycin during S-phase of the cell cycle. Thus, rapamycin is cytostatic in the presence of serum/TGF-β and cytotoxic in the absence of serum. However, i...
متن کاملMicroRNA-155 controls RB phosphorylation in normal and malignant B lymphocytes via the noncanonical TGF-β1/SMAD5 signaling module.
MicroRNA-155 (miR-155) plays pleiotropic roles in the biology of normal and malignant B lymphocytes, including the modulation of the transforming growth factor β (TGF-β) pathway via the targeting of SMAD5. However, the extent of the miR-155-mediated disruption of the TGF-β1/SMAD5 axis remains to be elucidated. To address this issue, we used the miR-155 knockout (KO) mouse and diffuse large B-ce...
متن کامل4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling
4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-β (TGF-β) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-β signal pathway has not yet been elucidated. We thus...
متن کاملCell Death and Survival Suppression of AKT Phosphorylation Restores Rapamycin- Based Synthetic Lethality in SMAD4-Defective Pancreatic Cancer Cells
mTOR has been implicated in survival signals for many human cancers. Rapamycin and TGF-b synergistically induce G1 cell-cycle arrest in several cell lines with intact TGF-b signaling pathway, which protects cells from the apoptotic effects of rapamycin during S-phase of the cell cycle. Thus, rapamycin is cytostatic in the presence of serum/TGF-b and cytotoxic in the absence of serum.However, if...
متن کاملChenopodium Botrys as a Source of Sesquiterpenes to Induce Apoptosis and G1 Cell Cycle Arrest in Cervical Cancer Cells
Conducting cell apoptosis pathways is a novel strategy in cancer treatment. This study aimed to explain that C. botrys essential oil could induce apoptosis and arrest the cell cycle in HeLa cells. Cytotoxic and apoptogenic effects of the essential oil of Jerusalem-oak (Chenopodium botrys L.), which was obtained from the aerial parts of the plant, were evaluated in HeLa cells. Cell viability was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer letters
دوره 360 2 شماره
صفحات -
تاریخ انتشار 2015